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ABS~RACT 

A theoretical analysis for the characteristic undamped natural 

fr~quencies and mode shapes of three dimensional piping systems with 

general topology is presented. The development makes use of matrix 

methodology including transfer matrices, dynamic stiffness matrices, and 

certain topological matrices derived from the theory of linear graphs. 

A distributed mass model is employed throughout. 
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CHAPTER I 

Introduction 

1.1 General Remarks 

The dynamic behaviour of piping systems is of general interest in the 

design of such systems. The objective of this thesis is to present an 

analytical method of determining the characteristic frequencies and mode 

shapes of mech~nical vibration of three dimensional piping systems possess

ing general topology. 

Although no digital computer program is incorporated in this thesis, 

the matrix method.s employed and the iteration solution suggested not only 

lend themselves to a computer solution, but they make a large capacity, 

high speed digital computer mandatory. 

1.2 Scope of Work Presented 

A method for determining, analytically, the undamped natural fre

quencies and mode shapes of three dimensional piping systems with general 

topology is presented herein. Previous investigators in this field have 

presented techniques which have been successfully employed for analysis of 

systems contained enti'rely in a plane and with "tree like" topology, that 

is, elastic branches have been permitted, but involved meshes or loops have 

been excluded. Also, previous mechanical models have not permitted the 

analysis of circular, elastic arcs with distributed mass. A method of 

obtaining the transfer matrix for a circular arc with distributed-mass is 

presented in Appendix A. The details of the method of obtaining topological 

matrices which permit analysi~ of general topology is presented in Chapter 

2, Section 2.7. Dynamic stiffness matrices are defined in Chapter 2, Sec

tion 2.4. The details of the necessary geometric analysis are presented in 

Chapter 2, Section 2.5 and 2.6. 
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1.3 Notation. 

[SV 

[Z] ab 

[D) i 

[f). 
1 

matrix 

state vector 

i th element of a state vector 

transfer matrix from node a to node b 

deflection partition of a state vector 

force partition of a state vector used with transfer matrix 

sign convention 

[z
11

],etc six by six partition of a transfer matrix 

dynamic stiffness matrix between node a and node b 

[s
11

J,etc six by six partition of a dynamic stiffness matrix 

[F). force partition of a state vector, associated with 
1 

[D) b a, 

X,Y,Z 

L 

ex.' (i1 t 

[G) 

[TLG] 

dynamic stiffness matrix sign convention 

deflection matrix of the terminal nodes of a primary path 

force matrix of the terminal nodes of a primary path 

system coordinates of a node 

vector length 

direction cosines 

unit vector 

central included angle 

radius of curvature 

vector from point A to point 0 

node rotation matrix 

state vector transformation matrix from a local 

reference system to the global reference system 
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[TGL] 

[SGL] 

[SLG] 

state vector transformation matrix from the global 

reference system to a local reference system 

primary path deflection matrix transformation 

matrix from global reference system to a local reference 

system 

primary path force matrix transformation matrix from 

local coordinates to global coordinates 

G network 

[A) node incidence matrix 

[SP] primitive stiffness matrix 

[SN] node stiffness matrix 

lsNI frequency determinant 

[DM] mode shape matrix 

[FN) node force matrix 

[DN] node deflection matrix 

~ . eigenvalue of an array of coefficients of 

differential equations 
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CHAPTER II 

Definition of Properties and Operations 

2.1 Problem Nomenclature and General Procedure 

The solution for the characteristic frequencies of a piping system 

with general topology requires a form of network analysis. In the analysis 

which follows, a given piece of pipe will be referred to as an element. The 

ends of an element will .be incident on nodes. If only two elements are in 

cident on a node, that node will be referred to as a trivial node. When 

more than two elements are incident on a node, that node will be referred to 

as a primary node. When an element terminates at a foundation or some other 

boundary of the system, that node, upon which only one element is incident, 

will be referred to as a bouridary node. Those elements connecting two non

trival nodes together will form a primary path when only trivial nodes are 

in the path connecting the two non-trivial nodes. 

The necessary solid geometry analysis utilizes conventional vector 

notation and involves many different frames of reference. Right handed 

triads will be developed which will be associated with each end of each 

element and will generally be referred to as local triads or local refer

ence systems. Such a triad wiil be so oriented that the x coordinate -wi ll 

be tangent to the centroidal axis of the element involved. One triad will 

be designated a global triad or global reference system and the node at 

which the global reference system is located will be designated the global 

origin. 

The general procedure is as follows. Beginning at a primary or bound-

ary node and proceeding along a primary path, certain geometrical properties 

will be developed for the first element encountered which will perm ~L. comput 

ing a transfer matrix. The next element will then be anal yzad for i t s 
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geometrical properties, its transfer matrix will be computed, a node rota

tion matrix, which is a function of the two triads associated with the ends 

of the elements incident at the trivial node involved, will be computed, and 

the product of these three matrices will be formed so as to eliminate the 

trivial node and leave a single transfer matrix for the first two elements. 

The next element is then analyzed in a similar fashion, a new transfer matrix 

is formed, and so on until a single transfer matrix has been computed for 

the entire primary path. This transfer matrix will then be transformed into 

a dynamic stiffness matrix which will contain the characteristic dynamic 

properties of the primary path analyzed. The dynamic stiffness matrix will 

then be transformed to the global reference system. This procedure will be 

repeated for all primary paths. 

Once dynamic stiffness matrices have been calculated for each primary 

path, they will all be assembled into a single diagonal matrix known as the 

primitive stiffness matrix. A topological matrix known as a node incidence 

matrix will then be formed. By premultiplying by the transpose of the node 

incidence matrix and postmultiplying by the node incidence matrix itself, 

the primitive stiffness matrix may be transformed into a new matrix called 

the node stiffness matrix. This matrix will relate the forces at the 

boundary nodes to the deflections at the non-trivial nodes of the network. 

By applying a qualitative knowledge of the constraints at the boundary nodes, 

a determinant known as the frequency determinant may be obtained from the 

node stiffness matrix. The frequency determinant will vanish for the char

acteristic frequencies of the network. Essentially, by a process of assum

ing values of frequency and determining the corresponding values of the 

frequency determinant, its zeros may be located and refined. 
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2.2 State Vector 

The state vector at a given node, a, of an elastic system is the 

collection or group of quantities whose sense and magnitude completely 

describe the instantaneous displacement, both rectilinear and angular, of 

that point from its quiescent position, as well as the corresponding recti-

linear and angular forces in the member at the same point at the same in-

stant, that is, those forces which, if a cutting plane were passed through 

the.point at the instant of interest, would have to be applied to each cut 

face to prevent relative motion between them. For the purposes of this 

discussion, the state vector will be considered to be a column matrix. 

Although the systems to be studied are three dimensional, the individual 

elements which make up the systems will be planar, that is, only straight 

elements or circular arcs are permitted. For such planar elements, it is 

possible to consider an in-plane and an out-of-plane state vector. Each of 

these state vectors would have six elements, three pertaining to force and 

three to deflections. Although this notion has some utility when discuss-

ing systems contained entirely in a plane or when deriving the distributed 
~ 

mass transfer matrices (to be discussed later) of the individual planar 

elements, it is useless for describing a three dLmensional system. There-

fore, all future references to a state vector, symbolized by [SV], will be 

the complete three dimensional state vector containing twelve elements, six 

of which describe displacement, and the other six describing force. These 

elements are organized and defined as follows: 
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sv 1, displacement in an x direction 

sv 2, displacement in a y direction 

sv 3, displacement in a z direction 

sv 4,. rotation about an x direction 

sv 5, rotation about a y direction 

[SV] = SV 6, rotation about a z direction 2- 1 

sv 7, force in an x direction 

sv 8, force in a y direction 

sv 9, force in a z direction 

sv 10, moment about an x direction 

sv 11, moment about a y direction 

sv 12, moment about a z direction 

A local X y z coordinate system and the elements of a state vector are 

arranged as in Fig. 2.1-1. 

'\,.5VI 
l.s v 3 "\1 
'f' ~V'I 

_}vh ~v1 
'\oS,\V 10 

~vq ~ 

Fig. 2.1-1. 
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The x axis of a local coordinate system is tangent to the centroidal 

axis. The y axis is normal to the x axis and directed in a convenient manner. 

The z axis is normal to both the x and y axis so as to form a right handed 

triad. As an example, the y axis of a curved element may be fixed in the 

plane of the curve and directed towards the center of curvature. The z 

axis would then be normal to the plane of the curve. A more complete dis-

cussion of coordinates is contained in a general discussion of solid geo-

metry which follows. 

2.3 Transfer Matrix 

The derivation of transfer matrices is treated in great detail in 

Reference 2 and the method employed to develop the transfer matrix for a 

circular arc with distributed mass is discussed in detail in Appendix A. 

Accordingly, only the briefest discussion will be given here, largely for 

the purpose of refreshing the reader's prior knowledge of this subject. 

For the purposes of this discussion, a transfer matrix is defined to be a 

twelve by twelve matrix which relates a state vector at one node and with 

a given orientation to another state vector at another node in a common pri-

mary path and generally having a different orientation from the first. Let 

[Z) represent such a transfer matrix. This relationship is described by 

the following matrix equation. 

= [SV] 
a 

2-2 

In this equation, [SV] represents a column state vector at node a, 
a 

[SV]b represents another column state vector at node b, and [Zlab represents 

the transfer matrix between node a and node b and is a frequency dependent 

property of the element or elements connecting node a and node b. 
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A dot written between two matrices indicates nothing more than ordinary 

matrix multiplication which could, of course, be indicated by writing the 

matrices in close juxtaposition. Here the dot is used to avoid confusion 

which might result from typewritten typography. 

Consider the following system containing two elements designated ab 

and be whose transfer matrices are known as [Z]ab and [Z]bc· 

Fig. 2.2-1. 

Given the state vector at node a, [SV] , the state vector at node b , 
a 

[SV]b, is given by eq. 2-2. 

Furthermore, [SV] is given as follows: 
c 

2-3 

It is apparent that the intermediate state vector at node b may be 

eleminated and the following equation written: 

2-4 

or 

[SV] 
a 2-5 

where 

2.3a Transfer Matrix Sign Convention 

A sign convention , unique to transfer matrix operation, must be estab -

lished. The force elements of [SV] are considered to be applied to e l ement 
a 
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ab at node a by node a. They are positive when their sense is in the posi

tive x, y, or z direction of the triad associated with element ab and located 

at node a. The angular forces, or moments, are positive according to a right 

hand rule about the x, y, or z directions. The force elements of [SV]b, as 

computed by eq. 2-2, are those forces applied by element ab to node b and 

have sense and orientation according to the triad associated with element 

ab and located at node b. The force elements of [SV]b, as given in eq. 2-3, 

are considered to be applied to element be at node b by node b. Their sense 

and orientation are specified according to the triad located at node b and 

associated with element be. In a like manner, the force elements of [SV] 
c 

are applied to node c by element be and have sense and orientation accord-

ing to the triad associated with element be at node c. 

It is apparent that there will generally be two local reference syst~s 

at each trivial node and that they will generally not have the same orienta

tion. This problem in geometry is handled by a rotation matrix which has 

been omitted from eqs. 2-4 and 2-6 in the interests of clarity, but is in

cluded in a discussion of geometry which follows. (cf. Sect. 2.8) 

2.4 Dynamic Stiffness Matrix 

A given state vector may be partitioned into two smaller column matrices, 

one containing the first six elements pertaining to deflection and referred 

to as a displacement vector, [D], and a second column matrix containing the 

last six elements pertaining to forces and referred to as a force vector, 

[f]. 

Consider two nodes, a and b, connected by a primary path. The path 

connecting nodes a and b need not be a unique one. If there exists more 

than one path, this discussion applies to any given one. Let the two state 
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vectors, [SV]a and [SV}b, be partitioned into the associated displacement 

and force vectors, [D)a, [f]a, [D)b, and [f)b. Let the appropriate transfer 

matrix, [Z]ab' be partitioned into four six by six matrices as indicated be

low. 

[DJ _ [ Z 11 t Z ,1 ] [ DJ 
f b - z'"' I ~.u ab • f a 

2-7 

Equation 2-7 may be expressed in an equivalent form as the following two 

equations: 

2-7a 

[f]b &!! [Z~ 1 ] • [D) + [Z,u] • [f) 
a a 

Let the following six by six matrices be defined as indicated. 

2-8 

We may now write the following. 

-[f)a = [Sll] • [D]a + [Sl2] 2-9 

[f]b = [S21] [D]a + [S22] 2-10 

2.4a Dynamic Stiffness Matrix Sign Convention 

Equation 2-9 computes the negative of the forces at node a applied by 

node a to element abo If it is clearly understood that the negatives of 

these forces are the positive forces applied by member ab to node a~ the 
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negative sign in equation 2-9 may be eliminated and both (f]a and (f]b are 

then considered to be forces applied by element ab to nodes a and b oriented 

according to triads located at nodes a and b. It is emphasized that this 

constitutes a unique sign convention-to be associated with stiffness matrices 

versus transfer matrices. In the succeeding development, force column 

matrices will be indicated by capital letters instead of lower case letters 

when they are associated with the stiffness matrix sign convention. 

The two force vectors may now be combined into a single twelve element 

column matrix containing the forces applied by the element ab to the nodes 

at a and b. In like fashion, the two displacement vectors may be combined. 

If the four six by six matrices are also combined to form a twelve by twelve 

matrix, the following equation may be written. 

IFJ =[Sll 

F : s21 1

1 

I I 

:~: ·[: J: 2-11 

which we write as 

[F]a,b = [S]a,b • [D]~,b 2-lla 

The twelve by twelve matrix, [S], will be referred to as the dynamic 

stiffness matrix. The dynamic stiffness matrix, like the transfer matrix 

from which it was derived, is a function of frequency and the relative 

displacement and orientation of the state vectors at a and b and also depends 

on the element or elements connecting a to b by a given primary path. One 

can think of eq. 2-lla as relating the distortion of the member , [D] b' to 
a, 

the forces, [F] b' producing them. 
a, 
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2.5 Local Solid Geometry 

Analysis of a three dimensional piping system requires , f or each 

element, a knowledge of the length, radius of curvature (for circular arcs), 

relative position and relative orientation. Such information may be readily 

obtained if the positions of the ends of each element are specified in a 

convenient basic reference system of cartesion coordinates. Such coordin-

ates will be referred to as system coordinates and might be measured from 

a corner of a room or any other convenient reference point. The three 

coordinates will be referred to as X, Y, and Z. It is convenient also to 

develop a number of local coordinate systems for use in calculating trans-

fer matrices and for other purposes. It is the purpose of this Section to 

accomplish this development. 

Consider a single straight element whose X, Y, and Z coordinates are 

known. Let one end be designated an "a" end and the other a "b" end. The 

"a" end may be considered to be the end with which a known state vector is 

associated. Let the system coordinates of the "a" end be designated X , 
a 

Ya, and Za. In a like manner, the "b" end coordinates will be ~' Yb, and 

Zb. Three local direction numbers may be defined as follows. 

- X a 

yah = yb - ya 

zab = zb - za 

2-12 

2=13 

2-14 

These three numbers are the direction numbers of a vector directed 

form "a" to "b" and of length, L, equal to that of the straight element. 

L is given by the following equation. 

L = Vx 2 ab + y 2 
ab 

13 

+ z 2 
ab 2-15 



Three direction cosines rXp fix, and tx may be obtained in the follow-

ing manner. 

(Y.. ,. X 
X ab 2-16 

L 

p = yab X 2-17 
L 

t ... z 
X ab 2-18 

L 

These three direction cosines are the direction cosines of a unit 

vector tangent to the centroidal axis of the straight element. The direc-

tion of this unit vector, designated e , is defined to be the X direction 
X 

of a unit triad fixed in space at the "a" end of the element. For a straight 

element, the y direction of the unit triad is defined so as to be parallel 

to the XY plane of the system coordinates as well as being normal to the 

local x direction. Given a unit vector, e , directed in such a manner, 
y 

the following vector equations may be written: 

le~ = 1 2-19 

e e = 0 2-20 
X y 

where - = cx I + /}_-;-+ ~ k and e cx1+~} e 
XJ 

= 
X X X y y y 

For e vector with a zero Z component, equations 2-20 and 2-22 may be 
y 

written in scalar form as follows: 

0<2+~2=1 
y y 2-19a 

()< X. (j. + ,9_ "/.. ,t;_ = 0 
X y X y 

2-20a 

These two equations define the magnitudes of the direction cosines of e 
y 

as follows: 

o< = --=='==== ym 2-21 
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=------ex-=~======== 

ffl 
0 = 0 y 

These equations will be valid except when 

2-22 

2-23 

e has zero .. Y component. 
X 

In such a case, the following equations will be used: 

()( a 0 2-2la 
y 

{Jy = 1 2-22a 

<! = 0 2-23a 
y 

The z direction of the local triad at "a" may now be defined by the 

following vector equation: 

e =ex e 
Z X y 

2-24 

The local triad thus established for a straight element specifies the 

orientation of the two state vectors associated with the ends of the element. 

The second of the two types of elements permitted in a three dimension-

al piping system is a circular arc. In general, a piping system would be 

fabricated so that the ends of a circular arc would be tangent to the ele-

ments that they are connected with. Consider such an arc with ends design-

ated "a" and "b" and with the system coordinates of the two ends designated 

X
8

, Y
3

, Z
8

, ~' Yb, and Zb in the same manner as the preceding straight 

element. The element attached to the arc at the "a" end will have a tri ad 

associated with it whose orientation has been previously determined. The 

unit vector, e ' of this triad will be tangent to the arc at the 11 a 11 end. 
X 

Let this vector now be designated et. Let the vector C connect the end 

points 11 a 91 and 19b 0
H. The di r ection numbers of c' cl ' c2' and c3 are given 

15 



by the following equations. 

c3 

The length of 

L • 

The direction 

()C 
c 

ftc 

¥ c 

:IIi z 
b 

C is 

y 
a 

- z a 

given as follows: 

y 2 2 2 
cl + c2 + c3 

cosines of C are as follows: 

= c 1 
L 

- c 2 
L 

- c 3 
L 

2-25 

2-26 

2-27 

2-28 

2-29 

2-30 

2-31 

These three direction cosines define a second unit vector e contained 
c 

in the plane of the arc just as is eto A unit vector, e , normal to the 
n 

plane of the curve can now be defined by the following vector equatioh. 

e 
n 

2-32 

A fourth unit vector, e , again contained in the plane of the curve, 
r 

but directed towards the center of curvature, can now be defined as follows: 

e = e x et r n 

Designating the direction cosiness of e as ~ , fi. , and r r r 

2-33 

~ , the r 

central included angle of the arc, €r, is given by the following equation. 

(Refer to Fig. 2.5-1). 

& = 2 arcsin (e • e ) 
r c 

2-34 

The radius of curvature,~, is given as follows: 

,P , = L/2 2-35 
e . e 

r c 
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Figo 2.5-1 

The three unit vectors, e , e , and e , form a local triad with origin 
x n r 

at "a" which specifies the orientation of the state vector associated with 

the "a" end. A similar triad fulfilling the same function at the "b" end 

may be obtained as follows. 

AO = AB + BO 2-36 

per = Le +,rerb 2-37 c 

erb = e Le 2-38 r ;oc 

e :iS e bX e 2-39 tb r n 

where etb' en' and erb forms the local triad at the "b" end. 

A combination of two straight elements and a circular arc, such as 

Fig. 2.5-2, where one is given the system coordinates of three points, 

"a", "b", and "c", and the radius of curvature of an arc to be fitted in 

the included angle is also permitted. Since the required analysis is a 

combination of the previous two, it will not be presented here. 
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2.5a Node Rotation Matrix, [G]. 

It is now possible to discuss the geometry ~equirements associated with 

more than two triads located at one common node; but with different orienta-

tions. 

Fig. 2.5-3a Fig. 2.5-3b 

Consider two elements, ab and be, connecting three nodes, a, b, and c, 

with node b a common node. If the centroidal axes of the two elements 

are not collinear atnode b, as indicated in Fig. 2.5-3a, the triad associated 

with element ab and located at node b will not have the same orientation as 

the triad associated with element be and also located at node b. In order 

to perfonn the multiplication indicated in eqs. 2-3, 2-4, and 2-6, it is 

necessary to perform a rotation transformation upon the state vector [SV]b' 

as computed by eq. 2-2, before utilizing it in eq. 2-3 to compute [SV] • 
c 

The circular arc transfer matrix developed in Appendix A performs the re-

quired rotation associated with a curved element as well as the translation 

associated with all transfer matrices. 

Consider some element of [SV]b, as computed by eq. 2-2, oriented in 

the x direction of the triad associated with element ab at node bo It will 

have three components when expressed in the primed coordinates of the triad 

at node b associated with element be. Since the triads concerned are de-

fined by unit vectors expressed in system coordinates, the component of 

any given x directed element in the x 1 direction will be the produc t of the 

magnitude of the x directed element and the dot product, e0 
• e • 

X X 

18 



As an example, let the f i rst three deflection elements of [SV]b 

oriented with element ab have magnitudes svl, sv2, and sv3. Let the desired 

magnitudes of the corresponding elements of [svrb oriented with element be 

be designated svl', sv2~ and sv3~ The latter three values are computed by 

the following equations. 

svl' 1::: -' ~ e . . 
X X 

sv2' = -' -e • e y X 

sv3' a e'. e . z X 

svl' ~· .~ X X 

sv2' = -· -e • e y X 

sv3 1 -1 -e • e z X 

svl' 

sv2' = [GX] 

sv3' 

where 

e 1 • e 
X X 

[GX]= 
e '_; e 
y X 

e'. e 
z X 

svl + ~·. 

svl 

svl 

X 

+ -' -e • e 
y y 

+ -' -e • e z y 

or 

e'. e 
X y 

-I -e • e 
y y -· -e • e z y 

or 

svl 

sv2 

sv3 

e'. e 
X y 

e'. e 
y y 

e'. e 
z y 

E! 

Since the four sets of x, y, and 

y 

. 

. sv2 

sv2 + 

sv2 + 

_, -
e • e 

X Z 

-1 -e • e 
y z 

-' -e • e 
z z 

e'. e 
X z 

e'. e y z 

e'. e 

+ e'. e 
X z 

-' -e • e 
y z -· -e • e . z z 

svl 

sv2 

sv3 

z ZJ 

. sv3 

sv
3 

sv3 

z directed elements of 

vector all require a similar transformation, it is apparent 

2-40 

2-41 

2-42 

2-43 

2-43a 

2-44 

a given state 

that a single 

12 x 12 matrix will perform the desired transformation for all elements. 

Such a matrix will have the three by three matrix, [GX], repeated four 

times on the major diagonal as follows: 
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GX 0 

0 GX 
[G] = 

0 0 

0 0 

0 

0 

GX 

0 

0 

0 

0 

GXj 

2-45 

The indicated elements of [G) are three by three matrices themselves. 

The bracket notation for [GX] has been omitted for clarity. This practice 

will be continued in the succeeding development. 

Now the following complete transformation can be made 

[SV]' • [G) [SV] 2-46 

Equations 2-4 and 2-6 can now be written without omitting the nee-

essary rotation matrix: 

[SV] = [Z) 
c be [Z] b • [SV] 

a a 
2-4a 

[Z] = [Z) 
ac be [Z] ab 

2.6 Global Solid Geometry 

In order to make use of certain features of linear graph theory which 

apply to mechanical network analysis, it is necessary to express all directed 

quantities in a single common reference system. Such a reference system will 

be called a global reference system. A discussion of network analysis of 

mechanical systems follows in Section 2.7. 

The location and orientation of a global reference system may be chosen 

artibrarily. Although it could be anywhere, for the purposes of this dis-

cussion, the global reference system will have the same orientation and 

position as the first local triad to be constructed. 

The derivation of the necessary transformation matrices and a more 

complete discussion are presented in Ref. 3. They are simply defined and 

exhibited here. 

Let [F) be some force column matrix expressed in a local reference 
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system and [F)' be the same force matrix expressed in the global refer-

ence system. [F) and [F)' will be related by a transformation matrix as 

follows: 

[F)' • [TOA] • [F) 2-47 

The matrix [TOA] may be partitioned into four three by three matrixes 

as indicated below. 

rTOA11 I TOA12 ] 

TOA21 1 TOA22 

TOA12 
is a zero matrix. 

TOA
11 

is obtained precisely like [GX) of Sect. 2.5 with the exception 

that the primed coordinate system is now the global reference system. 

= 

TOA
21 

is equal to TOA
11 

premultiplied by the 

following translation matrix [L). 

0 -L3 L2 

L = L3 0 -L 1 

-L .2 Ll 0 

The elements of L are defined as follows. 

2-48 

2-49 

Let X, Y, and Z be system coordinates of the local reference system 

position. Let X , Y , and Z be the system coordinates of the global g g g 

reference system position. Then 

Ll = X X 2-50 g 

L2 = y y 2-51 g 

L3 = z - z 2-52 g 

An inspection of [TOA] shows that the inverse is given as follows: 
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where 

and 

[TAO] = [TOA]-l = [TAOll 

TA0
21 

= 

The inverse transformation relationship can now be written as 
I 

[F] = [TAO] • [F] 

A similar transformation exists for displacements. 

2-53 

2-54 

2-55 

2-56 

Let [D] be some displacement matrix and let [D)' be the same displacement 

matrix expressed in a global reference system. The following equation may 

be written: 

[D 1 I = [TAO 1 T • [D 1 

where 

T ITOOAll 
[TAO] = L 

The inverse relationship is 

TOA2~ 
TOA22J 

also true. 

[D 1 • [TOA] T • [D 1 I 

where 

T rTAOOll [TOA] = 
TA021] 

TA022 

2-57 

2-58 

2-59 

2-60 

If the forces and deflections associated with a transfer matrix equa~ 

tion are transformed to a global form, a similar transformation must be made 

on the transfer matrix. A complete state vector is transformed as follows: 

or 

, rA0o~ [SV)b = l 
[SV]' = 

b 

0 -1· [SV]b 
TO~ 
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or 

[SV] 
a 

• 
_[

T0

0

A! 

[SV] • [TGL] . [SV] ' a a a 

[SV]' 
a 

These transformations operate on the transfer matrix as follows: 

2-62 

2-62a 

[SV]b,. [Z]ab • [SV]a 2-63 

[SV]b = [TLG]b • [SV]b= [TLG]b • [Z]ab" [TGL]a • [SV]~ 2-64 

or 

[SV]b = [Z]~b • [SV]~ 2-64a 

where 

2-65 

A similar transformation exists for the dynamic 

stiffness matrix. The deflections are transformed as follows: 

~ - [D)' 

TO~-- • a,b 

2-66 

or [D) = [SGL] b • [D] b a,b a, a, 2-66a 

[F] ' = r:A· a,b TJ [F]a,b 2-67 

or [F]' = [SLG] b [F] a, b 2-67a a,b a, 

[F) ' = [SLG] [S]a,b . [SGL] b • [D]' 
a,b a,b a, a,b 2-68 

[F]' = [S] ' b • [D]' 2-68a 
a,b a, a,b 

or 

where 

[S]' b = [SLG] b. [S] b. [SGL] b a, a, ' a, a, 
2-69 

In the preceding development, one may think of the transformation 

symbols as follows: 
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[TLG], local to global transformation matrix for transfer matrices 

[TGL], global to local transformation matrix for transfer matrices 

[SLG], local to global transformation matrix for stiffness matrices 

[SGL], global to local transformation matrix for stiffness matrices 

2.7 Application of Graph Theory and Topologi~al Matrices 

The present treatment of the problem of vibration of a mechanical net

work with general topology utilizes certain features of the theory of Linear 

Graphs. This discussion will be limited to those features and will be 

developed in terms of mechanical parameters rather than abstract mathe

matical ones. 

Given all the necessary quantities expressed in a global reference 

system, the topological solution which follows makes use of three conditions. 

First, the forces, applied by the primary path to the nodes upon which they 

are incident, are related to the end deflections of the paths by dynamic 

stiffness matrices. Second the nodes of the network must be in equilibrium, 

that is, th~ forces applied by the incident elements to a node must sum to 

zero for a primary node 9 or sum to the force which the node applies to the 

boundary in the case of a boundary node. Third, continuity requirements must 

be met at the nodes, that is, the deflections of the ends of the primary paths 

incident on a node are identically equal to each other and are equal to the 

deflection of the node. 

Consider some netwo.rk designated G. Let the number of nodes in G be M. 

Let the number of elements connecting the nodes be N/2. The N force column 

matrices associated with the N ends of the N/2 elements may be designated as 

[FE1], [FE2J, [FE3 ],---,[F~]. The deflection matrices associated with the 

ends of the N/2 elements may be designated as [DE
1
], [DE2], [DE3 ] 9 -~- 9 [D~ ] . 
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As defined by the stiffness matrices sign convention, the forces are 

positive when applied to the nodes. Now consider some node, m, of G, con-

nected to the rest of G by n elements. In order that the node m be in 

equilibrium, the n forces associated with the elements incident on node 

m must sum to zero or to the force applied by the boundary to node m. The 

N-n forces that are not applied to node m do not enter into the summation. 

Let the boundary forces, which may be zero, be designated [FN ]. There are M 
m 

summations to be made, one for each node. A given summation may be indicated 

as follows: 

[FN ] = t [at] .• [FE.] 
m j = 1 m,J J 

2-70 

The N coefficients [at] . are either a six by six identity matrix 
m, J 

or a six by six zero matrix according to the following rule. 

t [a ] . • I if end j is incident on node m 
m, J 

[at] . • 0 if end j is not incident on node m 
m, J 

2-71 

2-7la 

t When the M summations have been made, the coefficients [a ] . form 
m, J 

a matrix designated [A]t which has 6M rows and 6N columns. Now, if the N 

force matrices are assembled in a single column matrix, [FE], and a second 

column matrix [FN], is formed which contains all the boundary forces, both 

zero and non-zero, then [FN] is related by equilibirum requirements to [FE] 

as follows: 

[FN] • [A]t • [FE] 2-72 

Next we concern ourselves with geometrical continuity at the same 

node m with n elements incident on it. The n deflections of the n element 

ends at m must be identical. Also, the deflection of the node itself must 

be identical to each of the n element deflect i ons. Let the node deflec-

tion be [DN ]. One of these identical relationships may be expressed as 
m 
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the following summation. 

M 
[DE.] = L l J m:s [k] j ,m 

[DN ] 
m 

2-73 

The M coefficients [k]. are either a six by six identity matrix or a 
J ,m 

six by six zero matrix according to the following rule. 

[k] ~ [I] if end j is incident on node m 
j,m 

[k]. • [O] if end j is not incident on node m 
J ,m 

2-74 

2-74a 

There are N summations to be made. The coefficients [k] . form a 
J,m 

matrix which is [K]. Inspection of the rules for forming [K] reveals that 

t [K] is the transpose of [A] • Accordingly, it will be referred to as [A] 

henceforth. 

If the N deflection matrices associated with element ends are assembled 

into one column matrix, [DE], and theM deflection matrices associated with 

nodes are assembled into one 'column matrix, [DN], then [DE] and [DN] are 

related by continuity requirements as follows: 

[DE] = [A] • [DN] 2-75 

As developed in Section 2-4, eq. 2-12a, the forces and deflect i ons 

associated with a given element, e, having ends a, b, are rel ated as 

follows: 

There are N/2 such equations which can be written for G. Let them 

be written as follows: 

[Fl1a,b 

[F2]a b , 
[F3 1a,b 

= 

. [Dl] a
9
b 2-76 .1 

• [D2] a
9
b 2-76. 2 

o[D3] a , b 2-76. 3 
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The N/2 equations may be written in more compact form as follows: 

[FE] • [SP] • [DE] 2-77 

In eq. 2-77, the ordering of [FE] and [DE] follows a certain method. 

The forces occur in pairs for each element. This imposes a limitation on 

how the topological array [A] is made up. Although the order in which nodes 

occur is not restricted, it will be found most convenient to take the bound-

ary nodes first and then the remainder in any order. The order in which 

the forces [FE ] have been numbered is governed by the manner in which the 
n 

matrix [SP] is assembled. 

If eq. 2-75 is substituted into eq. 2-77 for [DE], the following is 

obtained. 

-(FE] • [SP] • [A) [DN] 2-78 

If eq. 2-78 is premultiplied by [A)t, and eq. 2-72 is used, the f'ollow-

ing is obtained. 

. t 
[FE] • [A) • [SP] • [A) • [DN] 2-79 

which we will write as 

[FN] = [SN] • [DN] 2-79a 

where 

[SN] • [A) t • [SP] • [A) 2-80 

The matrix [SP] will be refe~red to as the primitive stiffness matrix. 

The matrix [SN] will be referred to as the node stiffness matrix. 

2.8 Boundary Conditions and the Frequency Detenninant. 

A knowledge of the boundary constraints provides certain qualitative 

knowledge of [FN] and [DN] which in turn makes it possible to extract from 

[SN] an array, designated [SN], the determinant of which will vanish for 

certain values of frequency which are natural frequencies of the physical 

system. 
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I 

Fig. 2.8-1 

If the problem consisted of the simple beam of Fig. 2.8-1, the two 

nodes a and b would both be boundary nodes. The deflections at b would be 

generally non-zero while the forces would be zero. At node a, the deflec-

tions would be zero while the forces would be non-zero. Depending on the 

boundary conditions at a given node, there may be any combination of zero 

and non-zero forces and deflections. However, there will always be the same 

number of zero quantities, that is, for each zero force there will be a non-

%ero deflection and vice versa. Reference 1 gives a more complete dis-

cussion of such boundary conditions. 

The relationship rFN] = [SN] • [DN], as developed in Section 2.7, is a 

global equation while the given qualitative knowledge of [FN] and [DN] is 

in local coordinateso Just as forces and deflections were expressed in a 

global reference system so as to facilitate the desired topological opera-

tions, they must now be expressed in local coordinates so as to make use of 

the given qualitative knowledge of boundary conditions. However, only those 

six element matrices containing both zero and non-zero elements in local 

coordinates need be expressed in local coordinates. If [FN] and [DN] have 

not been assembled so that those six element matrices just mentioned are ad-

jacent and in low numbered positions, let [FN), [DN]» and [SN] be reordered as 

necessary so that the qualitative information is so positioned. If the 

number of nodes is M and the number of those having non-zero [FN ] matrices 
m 
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is p, then [FN] may be partitioned into two column matrices, the first 

containing p six element matrices and the second containing (m-p) six element 

matrices, of which, all elements are zero in global or in local coordinates. 

[DN] may be partitioned in like manner. The given qualitative knowledge 

of the first p six element matrices is not available in global coordinates, 

but the second will contain m-p six element matrices, which will be non-zero 

in either global or local coordinates. 

Let (FN], [DN], and [SN] be partitioned in this manner. Then the node 

stiffness equation* may be written as follows: 

[~] = ~nll sn12] • fl 0 sn21 sn22 rn-p 

2-81 

[F ] = [ snll] • [D ] + [ snl2] • [ D ] 
p p m-p 

2-8la 

[0] = [sn21] • [D ] + [sn22] [D ] 
p m-p 

2-8lb 

The forces and deflections associated with the p boundary nodes have 

the same local position and orientation as the forces and deflections associ-

ated with the element end incident on a given boundary node. 

inverse of the p translation and rotation matrices, [TOA] and 

Therefore, the 

[TAO] t, which 

transformed the boundary node element end forces and deflections to a global 

reference system may be retrieved and utilized to transform [F ] and [D ] to 
p p 

local coordinates. Let this be done and let the appropriate transformation 

matrices be arranged in two large arrays as indicated below: 

0 

0 0 

*cf. Eq. 2-79a. 
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0 

TAO 
p 

= [TAOP] 2-82 



0 

0 0 = [TOAP]t 

0 0 

Then we can write 

and 

[F 1 = [TAOP 1 • [F 1 
P local P 

[D 1 = [TOAP 1 t • [D 1 l l p ;· p oca 

Premultiplying eq. 2-8la by [TAOP1 gives the following resulto 

[TAOP] . [Fp1 = [Fp1 local= [TAOP1 • [sn11 1 • [Dp] + 

[TAOP1 • [sn121 • [D 1 m-p 

2-83 

2-84 

2-85 

2-86 

Substituting eq. 2-85 into eq. 2-8lb and eq. 2-86 for [D 1 gives the 
p 

following two equations. 

t 
[Fp1 local= [TAOP1 • [snll1 • [TOAP1 • [Dp] local+ 

[TAOP1 • [sn121 • [Dm-p1 

t 
[01 = [sn21 1 . [TOAP1 • [D 1 l l + [sn22 1 • [D ] p oca m-p 

Let the following four arrays be defined as indicated. 

[sn ] 9 
[;;!l 

12 

[ sn 1 ~ ~ 
21 

[ sn 1 ' ::11: 22 

[TAOP1 • [ sn12 1 

[ sn
21

2 • [TOAP1 t 

Now equations 2-81a and 2-8lb may be written as followso 
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2-89 

2-90 
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~]- [SN)' • TtJ Vm-p 
2-93 

where [F 1 and [D 1 are now in local coordinates. 
p p 

There are 6p elements in [F 1 and also in [D 1. Just as [SN1 was re-
p p 

ordered so that boundary node forces and deflections were in low numbered 

positions in [FN1 and [DN1, [SN1' may be reordered so that the non-zero 

elements of [F 1 are in low numbered positions and the zero elements of 
p 

[D 1 are in corresponding positions. Form nodes, rsNl' would be a 6m by 
p 

6m matrix. If the number of non-zero elements of [F 1 were q, then [SN1' 
p 

could be partitioned as follows: 

[F 1 = 
q 

[0 1 

2-94 

2-95 

For the boundary conditions given above, [sn
11

1'' is q by q, [sn
12

1'' 

is q by m-q, [sn21 J'' is m-q by q, and [sn221'' is m-q by m-q. Inspection 

of [sn22 1 •·• reveals that it must be singular if the non-zero elements of 

[DN1 may have any given value. The determinant of [sn 1'' will be referred 22 

to as the frequency determinant, ISNI • By evaluating ISNI at various 

frequencies over a given range, those values of frequency which yield a 

zero value forfsNI that is the eigenvalues or characteristic frequencies, 

may be determined. 

The reordering procedure indicated in the preceding is most appropriate 

for computer procedures. If one were doing such a manipulation with pencil 

and paper, one would naturally strike out rows of [SN1' corresponding to 

non-zero elements of rF 1 and strike out columns of [SN1' corresponding to 
p 

zero elements of [Dp1. The resulting array would be [sn 221''. We may now 

adopt a more convenient notation for [sn221'', that is [SN1. 
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2.9 Mode Shapes 

If we presume that [SN] is evaluated at a characteristic frequency and 

that [SN] is only "singly singular", that is, its rank is one less than 

its order*, we have 

o • [SN] • [DM) 2-96 

Let [DM] have g elements. One, say g , can always be chosen such that 
a 

the other g-1 elements of fDM] can be expressed in terms of g • roM] can 
a 

then be normalized so that 

fDM) t . [DM] • 1 2-97 

The matrix, [DM], thus obtained is unique, that is, independent of our 

choice of g . 
a 

[DM] is the mode shape of the primary nodes. Trivial nodes of interest 

may be included in [DM) by treating them as primary nodes in all the pre-

ceding analysis. 

An optional method of obtaining the mode shape of the trivial nodes is 

as follows: 

Reconstruct [DN] including the elements of [DM) where appropriate and 

carrying out the necessary local to global transformations. Obtain [DE] by 

pre-multiplying fDN] by [A] as follows: 

[DE) = [A) . [DN) 2-98 

The matrix rnE] may then be partitioned into the twelve element column 

matrices associated with the primary paths. 

* Otherwise, we have the coalescence of two roots which would complicate 
subsequent discus~ion unnecessarily, the situation being essentially no 
different than the case of any vibrating system having identical character
istic frequencies, corresponding to which the modes are not unique. 
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For any given primary path, say between primary nodes a and b, : we may 

then write 

[~J: - [S] a,b HJ: 2-99 

Solving eq. 2-99 for [F)a and [F)b provides sufficient knowledge to 

assemble a complete state vector at either node a or node b. By choosing 

node b, we may avoid any confusion concerning sign conventions. We may 

then write [SV]b as follows: 

= llJ: 2-100 

In eq. 2-100, we use lower case f indicating forces and sign conven-

tions appropriate for transfer matrix use. We may then evaluate the 

transfer matrices, at the appropriate eigenvalues, between the primary nodes 

and proceed to obtain the deflections associated with all nodes. 
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CHAPTER III 

Discussion 

3.1 Network Analogies 

As has been previously stated, the solution for characteristic frequen 

cies of three dimensional piping systems with general topology requires a 

form of network analysis. Once all vector like quantities had been ex~ 

pressed in a single common global reference system, as suggested by Ref. 3, 

the writer found the methods of network analysis developed by Fenves and 

Branin, Seshu and Reed, and Kron to be applicable to the subject analysis. 

Kron, in Ref. 5, describes the equivalent network of a vibrating beam 

as a six wire, six phase transmission line. Such a model does not permit 

the direct application of the development of Ref. 3. However, a similar 

technique was found in Ref. 4 which was directly applicable to a mechanical 

network when the properties of such a network were described in terms of the 

dynamic stiffness matrix suggested by Peste! in Ref. 1.* 

It should be noted that the mechanical transfer matrix was found to be 

analogous to the electrical transfer matrix of h parameters. The d~_amic 

stiffness matrix was found to be analogous to the electrical short circuit 

a~~ittance matrix. The connection tensors of Ref. 4 are node incidence mat

rices. And finally, force and current, as well as voltage and def l ection, 

are analogous. 

3.2 Practical Limitations 

In principle» there are no limitations to the size of a mechani ca l system 

that can be treated in this manner. 

*cf. page 150 , par a. 3 of Ref. 1 
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In reality, there are two. First, any given digital computer, though possess-

ing total recall, has a limited memory capacity. The method developed in 

this thesis requires the assembly of very large arrays. A network composed 

of 20 non-trivial nodes and 30 primary paths requires storage capacity for 

57,600 quantities for just two of the matrices involved, no matter how clever 

the programmer.* Although the subsystem technique developed in App. B would 

relieve this requirement somewhat, very large high speed computers are still 

mandatory ~omputational tools. The second limitation is that of the size of 

the numbers involved. A very large system will require the ability to 

compute very large or very small numbers. Thus, double, or even triple, 

precision may be required in order that precise answers may be obtained. 

* t For the example above, [A] • [SP] would be dimensioned 120 by 360 
and would contain 43,200 elements. [A]t • [SP] • [A] would be dimensioned 
120 by 120 and would contain 14,400 elements. 
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APPENDIX A 

A. Distributed Mass Transfer Matrix for Circular Arcs 

A.l General Remarks 

Although it is not the purpose of this thesis to derive transfer matrixes, 

the fact that the transfer matrix for a distributed mass model of a circular 

arc has not been developed and utilized before, warrants a discussion of the 

technique employed. Ref. 1 indicates the general method.* 

Since the development which follows is restricted to a single planar 

element, it is both possible and convenient to consider an In-Plane case 

and an Out-of-Plane case. Consider the In-Plane case. A sa~isfactory state 

vector, consisting of three deflections and three forces, may be defined as 

follows using the notation of Sect. 2.2. 

svl 

sv2 

[SV]IP = sv6 

svl2 

sv7 

sva 

A-1 

Given such a state vector, the following equation, as suggested by 

Ref . 1, may be written: 

d[SV]IP = [A] • [SV]IP A-2 
ds 

where s indicates the length of the arc. The matrix [A] should not be 

confused with the topological matrices previously developed. 

*cf. page 145, para. 3 of Ref. 1. 
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Matrix, [A], is an array of coefficients of six simultaneous differen

tial equations. It is derived in Ref. 1 and is repeated below: 

0 -K 0 0 0 1 
EA 

K 0 1 0 0 0 

0 0 0 1 0 0 A-3 

[A]= 0 0 2.. z. 
ui:r w 

Eiz 
0 -1 0 

0 'Z. 0 0 0 K -uw 

'2. 0 0 0 -K 0 -uw J 
The parameters of the non-zero elements of [A] are defined as follows: 

K , curvature, or inverse of radius 

E, Young's modulus 

I~ , moment of inertia about the z axis 

u, mass per unit length 

i~ , radius of gyration of cross sectional area about the 

z axis 

w, circular frequency of free vibration 

The elements of [A], for convenience, are renamed as follows after multi-

plication by s0 , total length of arc. 

Ks = B 
0 

s 
0 = 

EA 

s 
0 

EI 

c 

I;;! H 

2 
uiz w s = J 

0 

[A]s may be reordered in the following steps: 
0 

(a) interchange rows 2 and 5 

(b) interchange columns 2 and 5 
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The following is thus obtained: 

0 0 0 0 -B c 

0 0 0 0 L B 

0 0 0 H 0 0 

[A) • 0 -s J 0 0 0 A-4 
So 0 

B 0 s 0 0 0 
0 

L -B 0 0 0 0 

As indicated by Ref. 1, the eigenvalues, 'A , of the following array 

must now be obtained. 

~I]"- (A] s0 ] = [SD] 

It is apparent that [SD] has the following form: 

" 0 0 0 +B -c 

0 'A 0 0 -L -B 

0 0 "' -H 0 0 

[SD) = A-5 

0 +s -J ~ 0 0 
0 

B 0 -s 0 ~ 0 
0 

L +B 0 0 0 ')\ 

The characteristic equation of [SD] may be obtained in a number of ways. 

The following matrix reduction scheme is most convenient. Let [SD) be parti-

tioned into four three by three matrices as indicated above and below. 

[SD] = ~~~~J A-6 

R I s 

39 



A reduced matrix, [SDR], having the same characteristic values, is 

given as follows: 

[SDR] a: [P] - [Q] • [S] -l • [R] 

[SDR](\ = 'A2 
[I] - [Q] • [R] 

The product, [Q] • [R], is given below: 

(-B
2 + CL) 

[Q] • [R] = (2LB) 

0 (-H)s 
0 

(-B)s 

(L)s 
0 

(HJ) 

0 

Now, the elements of [SDR] ~ have the following form. 

(-2LB) 

[SDR ]/\ = 0 

(CB) (B)s 
0 

( "A2 + B
2
)(-L)s 

0 

(H)s 
0 

( (\ 2 -HJ) 

A-7 

A-8 

A-9 

Expansion by cofactors reveals the following polynominal as the charac-

teristic equation, or C. E. 

C.E. = ( )\ 
2 

+ B
2

-CL)( :A
2
+B

2
)(A

2
-HJ}+( )\

2
+B

2
-CL}(LH)s

2 
+ 

0 

(2LB)(CB)( /\ 
2
-HJ)-(2LB)(H)(B)s

2 
A-10 

0 

Further expansion reveals eq. A-10 as the following cubic in)\ 2 • 

A-lOa 

Further algebraic manipulation of the characteristic equation would be 

very tedious and difficult. However, numerical solution is quite simple. 

2 
The three coefficients of the powers of ~ may be evaluated for an assumed 

value of frequency. The trigonometric solution of a cubic equation will 

2 
yield three values for A The square roots of these values may then be 
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obtained yielding six values of }\ , generally complex. 

The solution of eq. A-2 is of the following form. 

[SV] • e [A] so . [SV] b a A-ll 

or 

[SV]b • [Z] b • [SV] 
a, a A-lla 

where 
[Z] • e[A)so 

a,b A-12 

Now the Cayley-Hamilton theorem may be employed as suggested in Ref. 

1. Since [A]s is a sixth-order square matrix, the (in-plane) transfer 
0 

matrix may be written as follows: 

A-13 

Since the eigenvalues of [A]s must satisfy eq. A-13 also, six 
0 

simultaneous equations may be written in a form similar to eq. A-13. These 

six equations may be written in matrix form as indicated below: 

~, 
I ~. X~ >-.~ A 'I "At co e I I 

e>-.1. ~.( )\J... 
l. 

r....3 
2_ "A" ~ 1 cl 

e(\3 A) "':J.. 3 ~1 /\'I 
3 >f 3 c2 

= • A-14 

eAIJ 'All /-.q "31.1 )\~ 'AI) 
'I c3 

e),.!i 
~s ~L. 

S' ~ ~ )\,5' /\~ c4 

e'A6 )\6 "~ ~ b XL >{ cs 

L J 
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or 

[ECS] • [RI l\]. [C) A-14a 

A given value of )\ may be represented as a complex m.unber, R( )\ ) + 

jl ( 'A ) , where R( ";\ ) indicates the real part of )\ and I ( "' ) indicates 

the imaginary part of A A power of "' may be indicated in a similar 

fashion as R( ~ n) + jl( " n). When a value of A has a non-zero imaginary 

part, there will be another value of ~ which will be the complex conjugate. 

When I( ~ ) is zero, the corresponding rows of [ECS] and [RI~] will remain 

as shown above. 

If I( A ) is non-zero, then the two rows of [ECS] and [RI)\] corres-

ponding to the conjugate pair involved may be combined as follows to yield 

equations containing real numbers only. 

R( A ) 2 , 3 
e cos!()'\)=- c0 + c1R(" H•/ c3R( (\ ) + 

4 5 
c

4
R( (\ ) + c

5
R( (\ } A-15 

R( {\ } . 2 3 
e sin!( A ) • c

0 
+ c1 I( (\ ) + c

2
I( (\ ) + c3I( )\ ) + 

4 5 
c 4I( (\ ) + c5I( "'- ) A-15a 

These two equations may be substituted in place of the rows from which 

they were obtained so as to obtain real values only in eq. A-14 and eq. A-14a. 

Then the coefficients may be found as 

[C)= [RI ~ ]-1 • [ECS] A-16 

Having thus ,obtained the six coefficients of eq. A-13, [Z]IP may 

readily be evaluated for the assumed frequency. A similar procedure will 

yield the Out-of-Plane transfer matrix [Zlop• [ZJ
1

p an9 [Z]OF may then be 

combined into one twelve by twelve array which, when reordered, is the 

general three dimensional transfer matrix desired. 
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APPENDIX B 

B. Sub~system Topological Technique 

Extremely large piping systems would exceed the storage capacity of 

the large computers available. A sub-system technique is presented in this 

appendix, which may ease computer storage problems. 

A q c 

8 Fig. B-1 

The system represented in Fig. B-1 might be viewed as the four elements 

connecting nodes A and a, B and b, C and c, c and d plus two sub-systems, one 

connecting nodes a, b, c, and containing nodes 1, 2, 3, and 4, and a second 

sub-system connecting nodes d and e and containing nodes 5, 6, 7, 8, and 9. 

Let the first sub-system be considered isolated from the general system 

at nodes a, b, and c» as represented in Fig. B-2. 

Fig. B-2 

The node stiffness matrix, [SN], may be obtained in the fashion 

previously described. This matrix would be 42 x 42. The node force matrixp 
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[FN), would have, when appropriately ordered, 18 non-zero elements in the 

low numbered positions and, since there are no forces applied to the sub-

system at nodes other than a, b, and c; the remaining 24 elements of [FN) 

would be zero. All of the elements of the node displacement matrix [DN] 

would be generally non-zero. Let [FN] be partitioned into a non-zero 

matrix, [FN] , corresponding to the forces at nodes a, b, and c, and a 
1 

zero matrix [FN)
2

• Let [DN], ordered so that the first 18 elements corres-

pond to the 18 elements of [FN]
1

, be partitioned so that the first 18 

elements make up a matrix, [DN]
1

, and the remaining elements make up a 

second matrix, [DN] 2• Let [SN] be reordered and partitioned so that the 

following two equations may be written: 

( FN] l =- [ R] • [ DN ] l + [ S ] • [ DN ] 2 B-1 

[FN] 2 • [T] • [DN]
1 

+ [U) • [DN] 2 B-2 

where 

[SN) • [; ~1 B-3 

Since [FN)
2 

is a zero matrix, eq. B-2 may be used to define [DN]
2 

as a function of [DN]
1

, [T), and [U] as follows: 

[0) =- [T) • [DN]
1 

+ [U) • [DN]
2 

B-2a 

P remul t1ply by the inverse of [U]. 

-1 
- [U] • [T] • [DN]

1 
= [DN]

2 B-4 

substitute eq. B-4 into eq. B-1 for [DN]
2

• 

[FN]
1 

= [R) • [DN]
1 

+ [S) • (-[U)-l . [T) • [DN]
1

) B-5 
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or 

[FN]
1 

• ([R] - [S) • [U) - l • [T]) • [DN
1

] B-Sa 

or 

B- Sb 

The column matrix [FN]
1 

contains the forces applied by the sub - system 

to nodes a, b, and c. Let it be written as follows: 

[FN) • 
1 

In a similar manner, write [DN]
1 

as follows: 

DEl a 

[DN] 1 • DElb 

DEle 

Now, eq. B-Sb may be written as follows: 

= [SN]
1 

• 

B-6 

B-7 

B-Sc 

If a similar analysis were made for the second sub-sys t em , the f ollow-

ing would result. 

[SN] 
2 B-8 

Similar equations can be wri tten for those e l ements connecting the 

sub·· systems together and to the boundari e s a t A, B, and C. 

45 



The system of Fig. B-1 has been thus reduced to that of Fig. B-3. 

I I a,~c, 13 J,e JL/ 

A c 

12. 

8 
Fig. B-3 

The reduced node incidence matrix (A] may be written as follows: 

element Nodes 

ends A B c a b c d e 

llA 1 0 0 0 0 0 0 0 

11 0 0 0 1 0 0 0 0 
a 

12B 0 1 0 0 0 0 0 0 

12b 0 0 0 0 1 0 0 0 

13 0 0 0 0 0 1 0 0 
c 

13d 0 0 0 0 0 0 1 0 

14 0 0 1 0 0 0 0 0 
c 

14 0 0 0 0 0 0 0 1 
e 

1 0 0 0 1 0 0 0 0 
a 

lb 0 0 0 0 1 0 0 0 

1 0 0 0 0 0 1 0 0 
c 

2d 0 0 0 0 0 0 1 0 

2 0 0 0 0 0 0 0 1 
e 
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The primitive stiffness matrix of the reduced system has the fo l lowing 

form: 

sll 0 0 0 0 0 

0 sl2 0 0 0 0 

0 0 sl3 0 0 0 
[SP] • 

0 0 0 sl4 0 0 

0 0 0 0 sl 0 

0 0 0 0 0 s2 

sll' sl2' sl3' sl4' and s
2 

are 12 x 12 arrays in this particular problem 

while sl is an 18 X 18 array. 

The reduced system node -stiffness matrix may now be formed from the 

reduced node incidence matrix and the reduced primitive stiffness matrix. 

[SN] = [A]T • [SP] . [A] B-9 

The reduced system frequency determinant, ISNI , the characteristic 

frequencies and the characteristic mode shapes may now be obtained in the 

fashion previously developed. 

In the preceding developments, trivial nodes were eliminated by using 

transfer matrix techniques. In this Appendix, we have seen that there are 

other nodes, which might be referred to as "removable nodes 00
, which may be 

eliminated by the indicated manipulation. 
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